Building Act 1993 Building Regulations 2006 REGULATION 1505: CERTIFICATE OF COMPLIANCE—DESIGN Building Name & Location: D/D 3 BED D/GARAGE RESIDENCE & NO: 17 FROME COURT, TAYLORS HILL

To:

Relevant Building Surveyor:

Postal address: P.O. Box 197, Werribee, Victoria

Postcode: 3030

From:

Building Practitioner: Priyan Wijeyeratne

Category and class: Registration No: EC 19060

Postal address: 9 Numering Court, Melton 3337

Postcode: 3337

Property details:

Number:	Street: Frome Court	City/Town: Taylors Hill	
Lot(s) No: 17	LP/LS:	Volume:	Folio:
Crown Allotment:	Section:	Parish:	
County	Municipal District: Melton CC		

Compliance:

I have designed/reviewed design and produced computations/reviewed computations and certify they comply with relevant Australian Standards including the following:

Building Code of Australia Vol.1/2, AS 1170.0, AS1170.1, AS1170.2, AS1684, AS1720, AS2870, AS 4100, AS 4600, AS 3600, AS3700.

I did / did not draw the plans for structural design.

	Title	Sheet/Drg. Nos
Drawings	D/S 3 BED D/G Residence	1 to 8
	Stiffened Raft Slab (SLOG)	1 to 2
Computations	Beams	
	B1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	One page each
	18,19,20,21,22,23,24,25,26	

Signature:

Signed: Date: 28/10/2015

Priyan Wijeyeratne

EC 19060

Registered Civil Engineer / Builder

Priyan Wijeyeratne EC 1/2060 / DBU 22220

Signature D1 1 1 Date 8,10,2015.

INPUT DATA Footing Analysis by: **\$1.0G**

Site: 17 FROME COURT, TAYLORS HILL

Reference: WB/2015/N/2 Date: 02/09/2015

Structure geometry

Length of Structure L:	22.6 m
Breadth of Structure:	12.76 m
No. beams parallel to Long Span:	6
No. beams parallel to Short Span:	9
Deflection Ratio △/L:	400
Maximum Allowable Deflection △:	30 mm
Depth Footing not Embedded:	0.2 m

Soil Properties

Soil Heave Ym;	60 mm
Depth of suction change Hs:	2 m
Mound stiffness k:	1000 kPa/m

Structure loads

Edge Load on West End:	10 kN/m
Edge Load on East End:	10 kN/m
Edge Load on North Side:	8 kN/m
Edge Load on South Side:	8 kN/m
North-South Centre Load:	4 kN/m
East-West Centre Load:	4 kN/m
Uniform distributed load:	2 kPa

Raft Footing Properties (for Input Steel)

Sub-Beam Width:	300	mm
Sub-Beam Top Bars:	334	mm²
Sub-Beam Bottom Bars:	334	mm²
Sub-Beam Steel Grade:	500	MPa
Top Concrete Cover:	30	mm
Bottom Concrete Cover:	30	mm
Slab Thickness:	100	mm
Area Slab Steel:	290	mm ² /m
Slab Steel Grade:	500	MPa
Concrete Compressive Strength fc:	20	MPa
Concrete Tensile Strength Hogging:	1.8	MPa
Concrete Tensile Strength Sagging:	2.7	MPa
Young's Modulus of Concrete:	15000	MPa
Requested Mu/Mcr Ratio Hogging:	1.2	
Requested Mu/Mcr Ratio Sagging:	1.2	
Slab Panel Width:	1276	mm

Additional Properties

Soil Edge Heave:	60 mm
Beam Side Friction:	25 kPa

OUTPUT - Raft Footing

Footing Analysis by: **SLOG**

Site:

17 FROME COURT, TAYLORS HILL

Reference: WB/2015/N/2 Date: 02/09/2015

Required Capacities per Beam

	Long Span		Short Span	
Centre Heave				
Ultimate Negative Moment:	-86.8	kNm	-89.9	kNm
Ultimate Positive Moment:	13.7	kNm	0.0	kNm
Max Shear:	33.5	kN	37.8	kN
Required Stiffness:	40.972	MNm ²	38.784	MNm ²
Edge Heave				
Ultimate Negative Moment:	-0.3	kNm	-3.7	kNm
Ultimate Positive Moment:	13.9	kNm	14.2	kNm
Max Shear:	-8.2	kN	-10.7	kN
Required Stiffness:	2.127	MNm ²	2.511	MNm ²
			1	

RAFT REQUIREMENTS

Sub-beams:	300	mm wide x	480	mm deep		
Slab:	100	mm	290	mm²/m Steel	500	MPa
Subbeam top bars:	334	mm² Steel	500	MPa		
Subbeam bottom bars:	334	mm² Steel	500	MPa		
Concrete:	20	MPa				

Actual Capacities per Beam

	Centre Heave		Edge Heave	
Sub-beam depth:	480	mm	480	mm
Input top bars	334	mm²		
Input bottom bars			334	mm²
Ultimate Moment Mu:	146.0	kNm	74.5	kNm
Cracking Moment Mcr:	54.5	kNm	42.2	kNm
Mu/M* =	2.03		6.57	
Mu/Mcr =	2.68		1.77	
Stiffness:	42.345	MNm ²	74.192	MNm ²

Job No: TAYLORS HILLS

Designed: PW

Date: 2 Sep 15

0 mm

Adopted precamber =

							FLO	OR BEAN	A STEEL B1 B2 B1
STEEL ROOF	F BEAM V5.00							WE	Civil Structural Engine
Vlember:	(FLOOR BEAM STE	EL B1 B2 B16) 20	0x75PFC	(G300) - No fly	bracing				
Bending:	M.dn*(max) = 34.	5kNm < øMb(150	00) = 48.8kNm				ОК	(0.71)	
	M.up* = 0.0kNm (
Deflection:	δdl = L/1102 (2mn	1), δil = L/1233 (2	2mm), δ	wi = L/2717 (1n	nm)			ОК	
Precamber: Reactions:	Not required (Each end) Rdi = 1	4 65M DH = 12 7t	M Dud*	- OOUN Dalas	- 26 GLM I	2 un* - 2 2kh			
teactions.	(Lacii eliu) Kui – 1	4.0KN, KII - 12.7F	CIA' LYANI.	- •5.5KN, N.UII	- 50.0KW,	7.up5.2ki4			
Geometry								·	
	Span (L) =	2750 mm		Top fl	ange restra	int/purlin cts (Le)	=	1500 mm	(Top flange)
	Centres (cts) =	7500 mm							αm = 1.
	_ 7/000	Objektivania		(a.a) (a)					αm = 1.
	Design at =	M mm f	rom LHS,	(M)ax, (S)eg		#h.b / 1 - b-			Top (Le) = 15
						Flybraces / Leb Bottom (Leb)		2750 mm	00 for seg. length)
						Calc. cmb		1.00	
oadings								2,00	
	Roof area (A) =	20.6 m²		Ammiliana	ind reduction		₩ M	_	
11 = 1	.8/A+0.12 ≥ 0.25 =	0.25 kPa A	S 1170 1		eduction (k	47 per elymania 200 - 2010 2010 2010 - 10	Y (Y)es,(N	,0 .2 Table 5.4	1
LL - 1,	.O/ A. O.122 & O.25	0.25 KI & A	W 1170,1		Ratio Ws/W	9900469849849999999999	5/87	ind analysi	
	Uniform dead load	is				TO THE STREET OF THE STREET	m. (-,
Roof	dead load (wdl) =	0.40 kPa *		7500	mm +		kN/m =		3.00 kN/m
Other	dead load (wdl) =	0.50 kPa *		7500	mm +	o kiyatin dila dike	∞ kN/m =		3.75 kN/m
Down	n only load (wdl) =	kPa *			mm +		kN/m =		0.00 kN/m
	Include S.Wt =	Y (Y)es,	(N)o				S.Wt =		0.23 kN/m
				Σwdl.up =	• 6	i.98 kN/m		Σwdl =	6.98 kN/m
D-	Uniform live loads			*****		izas vaetula was s	: ::		
	of live load (wll) = er live load (wll) =	0.25 kPa *		Control research to the Cherry ord	mm+		kN/m =		1.88 kN/m
	e point live load =	0.50 kPa * 1.40 kN		Distr. to	mm +	1 members	kN/m =	ΣwII =	3.75 kN/m 5.63 kN/m
raccinoc	Uniform wind load	CONTRACTOR STANCE STANCE		Disti, to	' Perindikanangan	A Members		24411 -	3.03 KIYIII
Ult.	wind load (Wu) =	0.75 kPa *		7500	mm				
	Cp,e =	0.7	Cp,i =	0.5	\$ '1		W	.w * =	-6.47 kN/m (up)
	Point loads								
	Dead load (pdl) =	10.0 kN							
	Live load (pll) =	10.0 kN			Positio	n = 137	5 mm fro	n LHS	
W	Vind load (pwl*) =				(Poin	t load positioned			
	w* = 1.2*wdl			kN/m		Rdi		14.6 kN	
	p* = 1.2*pdl w.up* = 0.9*wdl.u	,	27.00			Ril		12.73 kN	
	w.up* = 0.9*wai.u	•		kN/m (up) kN (down)		Rwl* R.dn*		-9.9 kN 36.6 kN	
	р.ар - 0.5 р	M*=		kNm (Max at 1	1375mm)	R.up*			(downward)
		M.up* =		kNm (Max at (=	•		1	,3041114410)
apacity				`					
	Description = 200	1x75PEC (@200)			14/~~~	ing constant (Iw)		10.6 x10 ⁵	9 mm ⁶
F	Flange yield (fyf) =	300 MPa				ing constant (iw)		10.6 x10 ⁻¹	
	Web yield (fyw) =	320 MPa				ection mod. (Zex)		221 x10	
	Area (Ag) =	2920 mm²				ection mod. (Zey)		46.7 x10	
	Stiffness (Ix) =	19.1 x10 ⁶ ı	mm ⁴		El	astic modulus (E)	= 2	.00000 MPa	a - Cl 1.4
	ø =	0.9 Table	3.4		Sł	near modulus (G)	=	80000 MPa	a - Cl 1.4
Msx = n	min(fyf,fyw)*Zex =	66.3 kNm		øMsx =	5	9.7 kNm	2	Msy =	12.6 kNm
	Down: Moa =	158.6 kNm		0.818		m = 1.00		bx.d =	48.8 kNm
laflactio	Uplift: Moa =	68.3 kNm	αsb =	0.609	am	b = 1.00	øΝ	bx.u =	36.3 kNm
eflections	 								
	req'd DL (L/250) =	4.3 x10 ⁶ i		< Critical	δι	DL = 2.	5 mm		Span / 1102
	lreq'd LL (L/240) =	3.7 x10 ⁶ ı			δ	LL= 2.	2 mm		Span / 1233
Ire	eq'd WLs (L/250) =	1.8 x10 ⁶ ı	mm ⁴		δW	Ls = 1.	0 mm		Span / 2717
	Max. precamber (0.3	3%*span) =	8	mm		Min. precamber	=	15 mm	l
	Procember 80	• •		mm	ا م	nted precamber		0 mm	

2 mm

Precamber 80% of δDL =

Job No: TAYLORS HILLS

Designed: PW
Date: 2 Sep 15

FLOOR BEAM STEEL B3 B4

-								FLOOR E	BEAM STEEL B3 B4
STEEL ROOF	BEAM V5.00							WB	Civil Structural Engineer
Member: Bending:	(FLOOR BEAM STE M.dn*(max) = 98. M.up* = 0.0kNm (5kNm < øMb(1500 No uplift)	,αm=1.0	00) = 98.6kNm				ОК (1.00)
Deflection: Precamber:	, , , , , , , , , , , , , , , , , , , ,							OK	
Reactions:	(Each end) Rdl = 2	· ·	I, Rwi* :	= -15.2kN, R.dr	* = 51.7kN	, R.up* = -9.2kN			
Geometry									
	Span (L) =	7500 mm		Top fl	ange restra	int/purlin cts (Le)	= 4.44 (\$).	1500 mm	(Top flange)
	Centres (cts) =	4500 mm							αm = 1.00
	Design at =	M mm fro	om LHS,	(M)ax, (S)eg					am = 1,0 Top (Le) = 150
						Fiybraces / Leb			00 for seg. length)
						Bottom (Leb) Calc. αmb		7500 mm 1.00	
Loadings						·			
	Roof area (A) =	33.8 m²		w vlaaA	ind reduction	on =	Y (Y)es,(N)	in	
LL = 1.	.8/A+0.12 ≥ 0.25 =	0.25 kPa AS	1170.1		eduction (k			.2 Table 5.4	
	lluttuum daad lass	J_			Ratio Ws/W	/u = 0,6	8 (Refer w	ind analysis	5)
Roof	Uniform dead load dead load (wdl) =	1.00 kPa *		4500	mm +		kN/m =		4.50 kN/m
	dead load (wdl) =	0,50 kPa *		VERNALISTA CELANTANIONI	mm +	e Side Service (1971)	kN/m =		2.25 kN/m
Down	n only load (wdl) =	kPa *			mm +		kN/m =		0.00 kN/m
	Include S.Wt =	Y (Y)es,(I	o(V		_		S.Wt =		0.36 kN/m
	Uniform live loads			Σwdl.up =	7	7.11 kN/m	Σ	wdl =	7.11 kN/m
Ro	of live load (wll) =	0.25 kPa *		4500	mm +		kN/m =		1.13 kN/m
	er live load (wll) =	0.50 kPa *		a reconstruction and account to an	mm +		kN/m =		2.25 kN/m
Alternati	e point live load =	1,40 kN		Distr. to	gar parasi na diga paggan sa	1 members		ΣwII =	3.38 kN/m
	Uniform wind load	ls							
Ult.	wind load (Wu) =	0.75 kPa *		4500					
	Cp,e = ○○○ Point loads	0.7	Cp,i ≂	0.5			W.	.wl* =	-3.79 kN/m (up)
	Dead load (pdf) =	1.0 kN							
	Live load (pll) =	0.3 kN			Positio	on = 375	0 mm fron	n LHS	
W	Vind load (pwl*) =	-2.0 kN (up)		(Poir	it load positioned	mid-span)		
	w* = 1.2*wdl		13.59			Rdl :		27.1 kN	
	p* = 1.2*pdl w.up* = 0.9*wdl.u	•	1.58			RII :		12.78 kN	
	p.up* = 0.9*wal.u	•		kN/m (down) kN (up)		Rwl* : R.dn* :		-15.2 kN 51.7 kN	
	p.up - 0.5 p	M*=		kNm (Max at 3	750mm)	R.up*:			downward)
		M.up* =		kNm (Max at 0	•				
Capacity									
	Description = 250	x90PFC (G300)			Warp	ing constant (lw)	=	35.9 x10 ⁹	mm ⁶
F	Flange yield (fyf) =	300 MPa			Tors	ional constant (J)	=	238 x10 ³	mm ⁴
,	Web yield (fyw) =	320 MPa				ection mod. (Zex)		421 x10³	
	Area (Ag) =	4520 mm²	4			ection mod. (Zey)		88.7 x10 ³	
	Stiffness (Ix) = Ø =	45.1 x10 ⁶ m 0.9 Table 3				astic modulus (E) : near modulus (G) :		00000 MPa 80000 MPa	
Msx = m	nin(fyf,fyw)*Zex =	126.3 kNm - (øMsx =		18.7 kNm		Msy =	23.9 kNm
	Down: Moa =	401.7 kNm (us =	0.868	α	m = 1.00		bx.d =	98.6 kNm
) of lastices	Uplift: Moa =	50.9 kNm (xsb =	0.327	αn	b = 1.00	øΜl	= u.xd	37.2 kNm
Deflections								*	
	req'd DL (L/250) =	50.3 x10 ⁶ m		< Critical			4 mm		Span / 224
	req'd LL (L/240) = q'd WLs (L/250) =	22.6 x10 ⁶ m 19.7 x10 ⁶ m					7 mm		Span / 479
116	, , , ,				δW		1 mm		Span / 573
	Max. precamber (0.3			mm		Min. precamber		15 mm	
	Precamber 80	70 OT OUL =	27	mm	Add	pted precamber	=	20 mm	

BUILDER:

Job No: TAYLORS HILLS

Designed: PW
Date: 2 Sep 15

FLOOR BEAM TIMBER B5 B6

Beam: (FLOOR BEA	M TIMBER B5 B6) 290m	m x 45mm F1	.7 KD HW (Single span)			
			96kNm < øM = 16.55kNm	1	OK	(0.40,0.36)
	9kN < øV(dl) = 16.96kN, 1		(0.26,0.23)			
Deflection: δ(dl+ΨI*II) :	= L/536 (7mm) , Ψs.δll =	L/2396 (1mm	ı), 1kN midspan δ =0.7mi	m	ОК	
Reactions: (Each end) F	Rdl = 2.8kN, Rll = 1.4kN, I	R* = 5.5kN				
Geometry (For a memi	per in a house or second	ary member i	n a building)			
Category	= 1 (1) Ho	use, (2) Prima	ry building elements, (3)	Important		
Span (L)			Span type =	S _. (S)i	ngie,(D)ouble	
Centres (cts) Lay			Edge restrained =	C (T)e	ension, (C)omp.	•
oadings				(Downward)		
Floor area (A)	= 3.50 m ²		Live load type =	N (N)	ormal, (S)torag	e (M)anual
					NZS 1170.0 - Ta	
Uniform dea	490.00.280 to horse an 40 46 46 60 ft			2808499000000000000000000000000000000000		
Floor dead load (wdl) Wall dead load (wdl)	EPARAMETERA XARARE	18/118	1000 mm +	366046697666946669694	/m =	0.50 kN/m
Other dead load (wdi)	· 图1000年8月1日 1000年8月1日 1000年8月		mm +	0.25 kN/		0.25 kN/m
Include S.Wt	azniklinden mildeknik	Nìn	1000 mm +	The state of the s	'm = /+ =	0.50 kN/m
motude 5.VV	(1)e2/(1	τη υ		S.W		0.08 kN/m
Uniform live	loads				Σwdl =	1.33 kN/m
Floor live load (wll)	CONTRACTOR OF CARROTTERS		1000 mm +	kN/	'm =	0.50 kN/m
Partitions (wll)	FGF6664-8664 666646	7251:000 424:64	1000 mm +	in regyő inibatóhatelkésésé	m =	0.00 kN/m
Alternate point live load	KOCKE ENANYAGIA KSEMBER AND	11 \$10.54	SOME A PERSON AND A PROPERTY OF	members	Σwll =	0.50 kN/m
			Section Control of the Control of the Control of the Control of the Control of Control o			0.00 1
Point loads						
Dead load (pdl)	= 1.00 kN			Position =	1750 mm	from LHS
Live load (pll)	= 1,00 kN		Shear using f	PL at support =	UNIVERSITATIONS	es,(N)o
					a transfer transfer to	
	LL factor (Ψsu) =	1.00	(Ψsp) =	1.00		
	LL factor (Ψlu) =	0.33	(Ψlp) =	0.40		
w(dl+Ψl.ll)* = 1.35*w	•	2.02 kN/m		4.75 kNn	n (Max at 1750	mm)
	2*wdl+1.5*wll =	2.35 kN/m		5.96 kNn	n (Max at 1750	mm)
p(dl+Ψl.ll)* = 1.35*;	•	1.89 kN	V(dl+Ψl.ll)* =	4.49 kN		
p* = 3	l.2*pdl+1.5*pll =	2.70 kN	V* =	5.47 kN		
ending and Shear Capacity -	Cl 3.2 & Cl 3.2.5					·
Member	= 290mm x 45mm F17 K	D HW		Area (A) =	13050 mm	1 ²
Description	= F17 seasoned hardwo	od	Section r	nodulus (Zx) =	631 x10	³ mm³
Design depth (dD)	= 290 mm			Stiffness (Ix) =	91.5 x10	⁶ mm⁴
Design width (dW)	= 45 mm		Modulus of	elasticity (E) =	14000 MP	a - Table H2.1
	\$1=1.25*dD/dW*(Lay/d	1D)0.5 ≃	14.19 For comp. edge	restrained Clan	27	
	$k12 \approx 1.5 - 0.05$ *	· · · · · · · · · · · · · · · · · · ·	0.822 for 10 < pb*S ≤		.3.2 f'b=	42.0 MPa
	Strength reduction fact	•	0.95 Table 2.1	av 013,6,4	f's =	42.0 MPa 3.6 MPa
		121	0.50 100K Z.I	Material cons		0.96 (rb=0.41)
øM(dl) = ø*(k:	L=0.57)*k4*k6*k9*k12*f	'b*Zx =	11.80 kNm	Duration fa		0.80
	= ø*k1*k4*k6*k9*k12*f		16.55 kNm	Moisture fa	69,040	1.00
			20100 111111		ctor (k4) = ctor (k6) =	1.00
øV(dI) = ø	*(k1=0.57)*k4*k6*f's*(2,	/3*A) =	16.96 kN	,	ctor (k9) =	1.00
e day	øV = ø*k1*k4*k6*f's*(2)	•	23.80 kN	Size modifer		1.00
eflections	(6)	/		Size modifer	-	1.00
least the court is to the	P	4 -				
Ireq'd DL+ΨI.LL (L/300)				6.5 mm		Span / 536
Ireq'd Ψs.LL (L/300)	= 11.5 x10 ⁶ mi	mª	Ψs.δLL =	1.5 mm		Span / 2396
	- 22					
j2	= 2.0		1kN midspan δ =	0.7 mm		

BUILDER:

Job No: TAYLORS HILLS Designed: PW Date: 2 Sep 15

FLOOR BEAM TIMBER B7-15, B20,B23-26

Beam:				n x 45mm F17 KD HW (S	ingle span)		
Bending:				kNm < øM = 12.09kNm		OH	((0.10,0.08)
Shear:	$V(di)^* = 1.83kN < \phi V(di) = 14.04kN, V^* = 2.18kN < \phi V = 19.70kN$ OK (0.13,0.11) $\delta(di+\Psi i^* ii) = L/3190 (1mm)$, $\Psi s. \delta ii = L/21504 (0mm)$, 1kN midspan $\delta = 0.2mm$ OK						
Deflection: Reactions:	$\delta(di+\Psii^*ii) = L/319$ (Each end) RdI = 1.			nm), 1kN midspan δ =0.2	2mm	OH	
Seometry	(For a member in a			ا سائدان ا			
	Category =						
	2018		ise, (2) Primai	ry building elements, (3)	Important		
	Span (L) = Centres (cts) =	1800 mm 1000 mm		Span type =	 Patholic Brighters (1997) 1983 (1997) 	(S)ingle,(D)ouble	
	Lay =	900 mm		Edge restrained =	(Downward)	(T)ension, (C)omp	•
oadings	/ maga				(DOWHWalu)		
,	Floor area (A) =	1.80 m²		Live load type =		(N) (C)	- () ()
	riodi dica (A) =	1.00 111		Live load type =		(N)ormal, (S)torag AS/NZS 1170.0 - T	
	Uniform dead load	ls				A3/1423 1170.0 - (:	auic 4.1
	dead load (wdl) =	0,50 kPa *		1000 mm +		kN/m =	0.50 kN/m
Wall	dead load (wdl) =	kPa*	378 VS	mm+	· 技术的关系以及系统的系统设施。	kN/m =	0.25 kN/m
Other	dead load (wdl) =	0.50 kPa *	Simil	1000 mm +		kN/m =	0.50 kN/m
	Include S.Wt =	Y (Y)es,(f	1)o			S.Wt =	0.07 kN/m
						Σwdl =	1.32 kN/m
F1	Uniform live loads				1575712000000000000000000000		
	or live load (wil) =	0.50 kPa *	450756	1000 mm +		kN/m =	0.50 kN/m
	Partitions (wll) =	kPa *		1000 mm +		kN/m =	0.00 kN/m
Alternate	point live load =	0.50 kN (crit	ical)	Distr. to 1	members	Σwll =	0.56 kN/m
	Point loads						
ſ	Dead load (pdl) =	kN			5 /		
,	Live load (pll) =			Ch	Position =	MARIUS OF WALLEYS FARS	n from LHS
	tive toad (pii) =	kN		Shear using	PL at support = (N (Y)	es,(N)o
	Short term LL fact	or (Ψsu) =	1.00	(Ψsp) =	1.00		
	Long term LL fact	•	0.33	(ΨIp) =	0.40		
w(dl+t	Ψl.ll)* = 1.35*wdl+1.5		2.03 kN/m			chies /hans as 000-	1
	w* = 1.2*wdl		2.42 kN/m	(kNm (Max at 900n	•
+lbla	+Ψl.ll)* = 1.35*pdl+1.5		0.00 kN			kNm (Max at 900n	ımı
p(G).	p* = 1.2*pd		0.00 kN	V(dI+ΨI.II)* = V* =	1.83		
	p - 1.2 pu	14.7.9 bit =	U.UU KIN	V* =	2.18 !	KN	
ending and Sh	near Capacity - Cl 3.2 8	k Cl 3.2.5					
	Member = 240r	mm x 45mm F17 KI	O HW		Area (A) =	10800 mm	12
	Description = F17	seasoned hardwoo	d	Section	modulus (Zx) =	432 x10	3 mm ³
Des	sign depth (dD) =	240 mm			Stiffness (lx) =	51.8 x10	⁶ mm ⁴
Desi	ign width (dW) =	45 mm		Modulus of	elasticity (E) =	14000 MP	a - Table H2.1
	\$1=1.	25*dD/dW*(Lay/d	•	12.91 For comp. edge			
	6 1	k12 = 1.5-0.05*		0.877 for 10 < ρb*S ≤	20 - Cl 3.2.4	f'b ≔	42.0 MPa
	Streni	gth reduction facto	or (ø) =	0.95 Table 2.1		f's =	3.6 MPa
	at (/all) = a*//a o om	**********		a a series		onstant (pb) =	0.97 (rb=0.34)
	øM(dl) = ø*(k1=0.57)			8.61 kNm		n factor (k1) =	0.80
	øM = ø*k1	*k4*k6*k9*k12*f'	b*Zx ≃	12.09 kNm	Moisture	e factor (k4) =	1.00
	a promise a second				Temp	. factor (k6) =	1.00
		.57)*k4*k6*f's*(2/		14.04 kN	Sharin	g factor (k9) =	1.00
	øV = ø	*k1*k4*k6*f's*(2/	3*A) =	19.70 kN	Size modi	ifer (mod.b) =	1.00
eflections					Size mod	ifer (mod.s) =	1.00
fronta Di	- 100 11 11 11 11 11 11 11	4.0405	.4				
-	L+ΨI.LL (L/300) =	4.9 x10 ⁶ mr			0.6 r		Span / 3190
ired.c	d Ψs.LL (L/300) =	0.7 x10 ⁶ mr	37	Ψs.δLL =	0.1 r	nm	Span / 21504
	j2 =	2.0		1kN midspan δ =			

BUILDER:

Job No: TAYLORS HILLS

Designed: PW Date: 2 Sep 15

FLOOR BEAM TIMBER B17-19

Reading:	TIMBER FLOOR BEAM V5.0	10			F		M TIMBER B17-19 Civil Structural Engineers
Category	Bending: $M(dl)^* = 0.23l$ Shear: $V(dl)^* = 1.02k$ Deflection: $\delta(dl+\Psil^*ll) = l$	kNm < øM(dl) = 5.90kNm, N < øV(dl) = 11.11kN, V* = /11419 (0mm) , Ψs.δll = L	M* = 0.33kl = 1.46kN < ø' /42678 (0ml	Nm < øM = 8.29kNm V = 15.60kN	0mm	OK (0.04,0.04)
Span Li	Geometry (For a membe	r in a house or secondary i	member in a	ı building)			
Span Li Span Sp	Category =	1 (1) House,	, (2) Primary	building elements, (3)	Important		
Floor area (A) = 0.90 m² Live load type = Ni (N)ormal, (S)torage, (M)anual AS/NZ5 1170.0 - Table 4.1	Centres (cts) = Lay =	1000 mm			C (T)e		
Floor dead load (wdl) =		0.90 m²		Live load type =			
Table Tabl	Floor dead load (wdl) = Wall dead load (wdl) = Other dead load (wdl) =	0.50 kPa * kPa * 0.50 kPa *		mm +	kN/i 0.25 kN/i kN/i	m = m = m =	0.50 kN/m 0.25 kN/m 0.50 kN/m
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Floor live load (wll) = Partitions (wll) =	0.50 kPa * kPa *	//2///2// Ι) ε	1000 mm +	kN/i	m = m =	0.50 kN/m 0.00 kN/m
Long term LL factor (Ψlu) = 0.33 (Ψ p) = 0.40 w(d +Ψ .l)* = 1.35*wd +1.5*Ψ *w) = 2.26 kN/m M(d +Ψ .l)* = 0.23 kNm (Max at 450mm) w* = 1.2*wd +1.5*W * = 3.23 kN/m M* = 0.33 kNm (Max at 450mm) p(d +Ψ .l)* = 1.35*pd +1.5*Ψ *p) = 0.00 kN V(d +Ψ .l)* = 1.02 kN p* = 1.2*pd +1.5*p = 0.00 kN V* = 1.46 kN Bending and Shear Capacity - Cl 3.2 & Cl 3.2.5 Member = 190mm x 45mm F17 KD HW Area (A) = 8550 mm² Description = F17 seasoned hardwood Section modulus (2x) = 271 x10³ mm³ Design depth (dD) = 190 mm Stiffness (x) = 25.7 x10° mm⁴ Design width (dW) = 45 mm Modulus of elasticity (E) = 14000 MPa - Table H2.1 S1=1.25*dD/dW*(Lay/dD)°-5 = 11.49 For comp. edge restrained - Cl 3.2.3.2 k12 = 1.5-0.05*pb*S = 0.959 for 10 < pb*S ≤ 20 - Cl 3.2.4 fb = 42.0 MPa Strength reduction factor (φ) = 0.95 Table 2.1 f's = 3.6 MPa Material constant (pb) = 0.94 (rb=0.52) øM(dl) = ø*(k1=0.57)*k4*k6*k9*k12*f'b*Zx = 5.90 kNm Duration factor (k1) = 0.80 øM = ø*k1*k4*k6*k9*k12*f'b*Zx = 8.29 kNm Moisture factor (k4) = 1.00 øV = ø*k1*k4*k6*f's*(2/3*A) = 11.11 kN Sharing factor (k9) = 1.00 Deflections Size modifier (mod.s) = 1.00	Dead load (pdl) =	W 60 P 60		Shear usìng I	2000	00078007800704	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Long term L w(dI+ΨI.II)* = 1.35*wd w* = 1.2 p(dI+ΨI.II)* = 1.35*pd	L factor (Ψlu) = +1.5*Ψ *w) = *wdl+1.5*wi = +1.5*Ψ *p) =	0.33 2.26 kN/m 3.23 kN/m 0.00 kN	(Ψlp) = M(dl+Ψl.ll)* = M* = V(dl+Ψl.ll)* =	0.40 0.23 kNn 0.33 kNn 1.02 kN	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bending and Shear Capacity - Cl	3.2 & Cl 3.2.5					
$k12 = 1.5 \cdot 0.05 \cdot pb \cdot S = 0.959 \text{ for } 10 < pb \cdot S \le 20 \cdot Cl \ 3.2.4 \qquad f'b = 42.0 \text{ MPa}$ $Strength reduction factor (ϕ) = 0.95 \text{ Table } 2.1 \qquad f's = 3.6 \text{ MPa}$ $Material \ constant ($pb$) = 0.94 \ ($rb = 0.52$)$ $$\phi M(dl) = $\phi^*(k1 = 0.57)^*k4^*k6^*k9^*k12^*f'b^*Zx = 5.90 \text{ kNm} \qquad Duration factor ($k1$) = 0.80$ $$\phi M = $\phi^*k1^*k4^*k6^*k9^*k12^*f'b^*Zx = 8.29 \text{ kNm} \qquad Moisture factor ($k4$) = 1.00$ $$Temp. factor ($k6$) = 1.00$ $$\phi V(dl) = $\phi^*(k1 = 0.57)^*k4^*k6^*f's^*(2/3^*A) = 11.11 \text{ kN} \qquad Sharing factor ($k9$) = 1.00$ $$\phi V = $\phi^*k1^*k4^*k6^*f's^*(2/3^*A) = 15.60 \text{ kN} \qquad Size \ modifer (mod.b) = 1.00$ $$Deflections \qquad Size \ modifer (mod.s) = 1.00$	Description = Design depth (dD)	F17 seasoned hardwood 190 mm	НW		modulus (Zx) = Stiffness (Ix) =	271 x10 ³ 25.7 x10 ⁶	mm³ mm⁴
$ \emptyset M(di) = \emptyset^*(k1=0.57)^*k4^*k6^*k9^*k12^*f'b^*Zx = 5.90 \text{ kNm} \qquad \text{Duration factor } (k1) = 0.80 $ $ \emptyset M = \emptyset^*k1^*k4^*k6^*k9^*k12^*f'b^*Zx = 8.29 \text{ kNm} \qquad \text{Moisture factor } (k4) = 1.00 $ $ \text{Temp. factor } (k6) = 1.00 $ $ \emptyset V(di) = \emptyset^*(k1=0.57)^*k4^*k6^*f's^*(2/3^*A) = 11.11 \text{ kN} \qquad \text{Sharing factor } (k9) = 1.00 $ $ \emptyset V = \emptyset^*k1^*k4^*k6^*f's^*(2/3^*A) = 15.60 \text{ kN} \qquad \text{Size modifer } (\text{mod.b}) = 1.00 $ $ \text{Deflections} \qquad \qquad \text{Size modifer } (\text{mod.s}) = 1.00 $		k12 = 1.5-0.05*pb	*S =	0.959 for 10 < pb*5 s	20 - Cl 3.2.4	f'b = f's =	3.6 MPa
øV = ø*k1*k4*k6*f's*(2/3*A) = 15.60 kN Size modifer (mod.b) = 1.00 Deflections Size modifer (mod.s) = 1.00	øM =	ø*k1*k4*k6*k9*k12*f'b*	Zx =	8.29 kNm	Duration fa Moisture fa Temp. fa	ctor (k1) = ctor (k4) = ctor (k6) =	0.80 1.00 1.00
	Q	•	-		Size modifer	(mod.b) =	1.00
Ireq'd Ψs.LL (L/300) = 0.2 x10 ⁶ mm ⁴	, , , ,	0.2 x10⁵ mm⁴		Ψs.δLL =	0.0 mm		Span / 11419 Span / 42678

BUILDER:

Job No: TAYLORS HILLS

Designed: PW
Date: 2 Sep 15

FLOOR BEAM TIMBER B21-22

MBER FLO	OOR BEAM V5.00	median discount diseases			AND AND ADDRESS OF A SHARE A	WB		
eam:	(FLOOR BEAM TIME	BER B21-22) 90mi	m x 45mm F17	KD HW (Single span)				
ending:	M(dl)* = 0.19kNm -	M(di)* = 0.19kNm < øM(di) = 1.38kNm, M* = 0.28kNm < øM = 1.94kNm				ОК (0.14,0.15)	
hear:	$V(dl)^* = 0.93kN < \phi V(dl) = 5.26kN, V^* = 1.38kN < \phi V = 7.39kN$					OK (0.18,0.19)		
Deflection:	δ(dl+Ψl*ll) = L/1599 (1mm) , Ψs.δll = L/5464 (0mm), 1kN midspan δ ≃0.3mm					ок		
Reactions:	(Each end) Rdl = 0.5	5kN, RII = 0.5kN, F	R* = 1.4kN					
ieometry	(For a member in a	house or seconda	ary member in a	a building)				
	Category =	1 (1) Ho	use, (2) Primary	building elements, (3)	Important			
	Span (L) =	820 mm		Span type =	Tasaf was substituted at the same and a second	igle,(D)ouble		
	Centres (cts) =	1000 mm		Edge restrained =		nsion, (C)omp.		
oadings	Lay =	900 mm			(Downward)			
ouumgs.	Floor area (A) =	0.82 m²		Live load type =		ormal, (S)torage,		
	Uniform dead loads	ς.			AS/I	NZS 1170.0 - Tab	He 4.1	
Floor	dead load (wdl) =	0.50 kPa *		1000 mm +	kN/i	m =	0.50 kN/m	
	l dead load (wdl) =	kPa*	33,83,83	mm +	0.25 kN/i		0.25 kN/m	
	dead load (wdl) =	0.50 kPa *		1000 mm +	kN/i		0.50 kN/m	
	Include S.Wt =	Y (Y)es,(i	N)o	eta analiga de eterra que	S.W		0.03 kN/m	
	- 40%/30%/dv	anni a Real ann an t-1815 (1919 - 1919)	*			Σwdl =	1.28 kN/m	
	Uniform live loads	\$40 min 200 min 6			or somethic and the			
Flo	or live load (wll) =	0,50 kPa *	60091584.03	1000 mm +	kN/i		0.50 kN/m	
	Partitions (wll) =	kPa *	464	1000 mm +	kN/ı		0.00 kN/m	
				\$600 PER				
Alternat	te point live load =	0.50 kN (cri	itical) i	Distr. to 1	members	Σwll =	1.22 kN/m	
Alternat	-	0.50 kN (cri	tical) i	Distr. to 1	members	Σwll =	1.22 kN/m	
Alternat	Point loads		itical) (Distr. to 1	tveci	winostrida Martina	·	
Alternat	-	0.50 kN (cri kN kN	itical) l		members Position = PL at support =	Σwll = 410 mm N (Y)es	from LHS	
Alternat	Point loads Dead load (pdl) = Live load (pll) =	kN kN		Shear using I	Position = PL at support =	410 mm	from LHS	
Alternat	Point loads Dead load (pdl) = Live load (pll) = Short term LL factor	kN kN or (Ψsu) =	1.00	Shear using I (Ψsp) =	Position = PL at support =	410 mm	from LHS	
	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact	kN kN or (Ψsu) = cor (Ψlu) =	1.00 0.33	Shear using I (Ψsp) = (Ψlp) =	Position = PL at support = 1.00 0.40	410 mm N (Y)es	from LHS ,,(N)o	
	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.II}* = 1.35*wdi+1.5	kN kN or (Ψsu) = cor (Ψlu) = *Ψ!*w!!) =	1.00 0.33 2.27 kN/m	Shear using I (Ψsp) = (Ψlp) = M(d!+Ψ!.!!)* =	Position = PL at support = 1.00 0.40 0.19 kNn	410 mm N (Y)es n (Max at 410m)	from LHS ,,(N)o m)	
w(di-	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.II)* = 1.35*wdl+1.5' w* = 1.2*wdl	kN kN or (Ψsu) = for (Ψlu) = *Ψ]*wII) = +1.5*wII =	1.00 0.33 2.27 kN/m 3.36 kN/m	Shear using I (Ψsp) = (Ψlp) = M(dl+Ψl.ll)* = M* =	Position = PL at support = 1.00 0.40 0.19 kNn 0.28 kNn	410 mm N (Y)es	from LHS ,,(N)o m)	
w(di-	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.II}* = 1.35*wdi+1.5	kN kN or (\Psu) = for (\Psu) = *\Psi *\Psi *\Psi = *\Psi *\Psi = *\Psi *\Psi =	1.00 0.33 2.27 kN/m	Shear using I (Ψsp) = (Ψlp) = M(d!+Ψ!.!!)* =	Position = PL at support = 1.00 0.40 0.19 kNn	410 mm N (Y)es n (Max at 410m)	from LHS ,,(N)o m)	
w(dl- b)q	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.II)* = 1.35*wdl+1.5 w* = 1.2*wdl- II+ΨI.II)* = 1.35*pdl+1.5	kN kN or (\Psu) = tor (\Psu) = *\Psi *\Psi *\Psi = *\Psi *\Psi *\Psi = +1.5*\Psi =	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN	Shear using I (Ψsp) = (Ψlp) = M(dl+Ψl.ll)* = M* = V(dl+Ψl.ll)* =	Position = PL at support = 1.00 0.40 0.19 kNn 0.28 kNn 0.93 kN	410 mm N (Y)es n (Max at 410m)	from LHS ,,(N)o m)	
w(dl- b)q	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.II)* = 1.35*wdi+1.5 w* = 1.2*wdi i+ΨI.II)* = 1.35*pdi+1.5 p* = 1.2*pdi	kN kN or (\Psu) = tor (\Psu) = *\Psi *\Psi *\Psi = *\Psi *\Psi *\Psi = +1.5*\Psi =	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN 0.00 kN	Shear using I (Ψsp) = (Ψlp) = M(dl+Ψl.ll)* = M* = V(dl+Ψl.ll)* =	Position = 1.00 0.40 0.19 kNn 0.28 kNn 1.38 kN	410 mm N (Y)es n (Max at 410m)	from LHS s,(N)o m)	
w(dl- b)q	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.II)* = 1.35*wdi+1.5 w* = 1.2*wdi i+ΨI.II)* = 1.35*pdi+1.5 p* = 1.2*pdi	kN kN or (\Psu) = for (\Psi u) = *\Psi v wii = for \Psi v v ii = for \Psi v ii	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN 0.00 kN	Shear using I (Ψsp) = (Ψlp) = M(dl+Ψl.II)* = M* = V(dl+Ψl.II)* = V* =	Position = PL at support = 1.00 0.40 0.19 kNn 0.28 kNn 0.93 kN	410 mm N (Y)es n (Max at 410mi n (Max at 410mi	from LHS s,(N)o m) m)	
w(dl- p(dl Bending and S	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.!!)* = 1.35*wdi+1.5 w* = 1.2*wdi (i+ΨI.!i)* = 1.35*pdi+1.5 p* = 1.2*pdi Shear Capacity - Cl 3.2 &	kN kN or (\Psu) = for (\Psi u) = *\Psi v wii = for \Psi v v ii = for \Psi v ii = for \	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN 0.00 kN	Shear using I (Ψsp) = (Ψlp) = M(dl+Ψl.II)* = M* = V(dl+Ψl.II)* = V* =	Position = 1.00 0.40 0.19 kNn 0.28 kNn 0.93 kN 1.38 kN	410 mm N (Y)es n (Max at 410mi n (Max at 410mi 4050 mm²	from LHS s,(N)o m) m) m)	
w(dl- p(dl B ending and S De	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.!!)* = 1.35*wdi+1.5 w* = 1.2*wdi i+ΨI.i!)* = 1.35*pdi+1.5 p* = 1.2*pdi Shear Capacity - Cl 3.2 & Member = 90m Description = F17	kN kN or (\Psu) = for (\Psi u) = *\Psi *\Psi v = +1.5*\psi +1.5*\psi +1.5*\psi 3. Cl 3.2.5	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN 0.00 kN	Shear using I (Ψsp) = (Ψlp) = M(dl+Ψl.II)* = M* = V(dl+Ψl.II)* = V* =	Position = 1.00 0.40 0.19 kNn 0.28 kNn 0.93 kN 1.38 kN Area (A) = modulus (Zx) =	410 mm N (Y)es n (Max at 410mi n (Max at 410mi 4050 mm ² 61 x10 ³ 2.7 x10 ⁶	from LHS s,(N)o m) m) m)	
w(dl- p(dl B ending and S De	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +\Psi L35*\wdi+1.5* \text{ w* = 1.2*\wdi-1.5*} \text{ p* = 1.2*\pdi-1.5*} P* = 1.2*\pdi-1.5* Member = 90m Description = F17 esign depth (dD) = esign width (dW) =	kN kN or (Ψsu) = cor (Ψlu) = *Ψ!*wll) = +1.5*wll = *Ψ!*pll) = !+1.5*pll = & Cl 3.2.5 om x 45mm F17 K0 seasoned hardwo	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN 0.00 kN	Shear using I (Ψsp) = (Ψlp) = M(dl+Ψl.II)* = V(dl+Ψl.II)* = V* = Section Modulus of	Position = 1.00 0.40 0.19 kNn 0.28 kNn 0.93 kN 1.38 kN Area (A) = modulus (Zx) = Stiffness (Ix) = f elasticity (E) =	410 mm N (Y)es n (Max at 410mi n (Max at 410mi 1 61 x10 ³ 2.7 x10 ⁶ 14000 MPa	from LHS (A) (A) (A) (A) (A) (A) (A) (A	
w(dl- p(dl B ending and S De	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +\Psi L35*\wdi+1.5* \text{ w* = 1.2*\wdi-1.5*} \text{ p* = 1.2*\pdi-1.5*} p* = 1.2*\pdi-1.5* Member = 90m Description = F17 esign depth (dD) = esign width (dW) =	kN kN or (\Psu) = cor (\Psu) = *\Psi *\Psi *\Psi = 1.5*\Psi = 1.5*\Psi = 1.5*\Psi = \text{2.5}} 2.3.2.5 3.2.5	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN 0.00 kN	Shear using I (Ψsp) = (Ψlp) = M(dl+Ψl.II)* = M* = V(dl+Ψl.II)* = V* =	Position = 1.00 0.40 0.19 kNn 0.28 kNn 0.93 kN 1.38 kN Area (A) = modulus (Zx) = Stiffness (Ix) = f elasticity (E) = e restrained - Cl 3.2	410 mm N (Y)es n (Max at 410mi n (Max at 410mi 1 61 x10 ³ 2.7 x10 ⁶ 14000 MPa	from LHS (A) (A) (A) (A) (A) (A) (A) (A	
w(dl- p(dl B ending and S De	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.II)* = 1.35*wdi+1.5 w* = 1.2*wdi-1.5 p* = 1.2*pdi Shear Capacity - Cl 3.2 & Member = 90m Description = F17 esign depth (dD) = esign width (dW) =	kN kN or (Ψsu) = cor (Ψlu) = *Ψ!*wll) = +1.5*wll = *Ψ!*pll) = !+1.5*pll = & Cl 3.2.5 om x 45mm F17 K0 seasoned hardwo	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN 0.00 kN D HW ood	Shear using I (Ψsp) = (Ψlp) = M(dI+ΨI.II)* = V(dI+ΨI.II)* = V* = Section Modulus of	Position = 1.00 0.40 0.19 kNn 0.28 kNn 0.93 kN 1.38 kN Area (A) = modulus (Zx) = Stiffness (Ix) = f elasticity (E) = e restrained - Cl 3.2	410 mm N (Y)es n (Max at 410mi n (Max at 410mi 1 61 x10 ³ 2.7 x10 ⁶ 14000 MPa	from LHS (A)(A)(A) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	
w(dl- p(dl B ending and S De	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.II)* = 1.35*wdi+1.5 w* = 1.2*wdi-1.5 p* = 1.2*pdi Shear Capacity - Cl 3.2 & Member = 90m Description = F17 esign depth (dD) = esign width (dW) =	kN kN or (\Psu) = cor (\Psu) = *\Psi *\Psi = +1.5*\psi = !+1.5*\psi = !+1.5*\psi = !\psi Cl 3.2.5 om x 45mm F17 Kl seasoned hardwo 90 mm 45 mm	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN 0.00 kN D HW ood	Shear using I (Ψsp) = (Ψlp) = M(d!+ΨI.II)* = M* = V(dI+ΨI.II)* = V* = Section Modulus of 7.91 For comp. edge 1.000 for pb*S < 10 -	Position = 1.00 0.40 0.19 kNn 0.28 kNn 0.93 kN 1.38 kN Area (A) = modulus (Zx) = Stiffness (Ix) = f elasticity (E) = e restrained - Cl 3.2	410 mm N (Y)es n (Max at 410mi n (Max at 410mi 10 (Max at 410mi 11 (Max at 410mi 12.7 x106 14000 MPa 3.2.2 f'b = f's =	from LHS i,(N)o m) n) - Table H2.1 42.0 MPa 3.6 MPa	
w(dl- p(dl B ending and S De	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.II)* = 1.35*wdi+1.5 w* = 1.2*wdi-1.5 p* = 1.2*pdi Shear Capacity - Cl 3.2 & Member = 90m Description = F17 esign depth (dD) = esign width (dW) =	kN or (\Psu) = or (\Psu) = *\Psi	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN 0.00 kN D HW bod (dD) ^{0.5} = k12 = tor (ø) =	Shear using I (Ψsp) = (Ψlp) = M(d!+ΨI.II)* = M* = V(dI+ΨI.II)* = V* = Section Modulus of 7.91 For comp. edge 1.000 for pb*S < 10 -	Position = 1.00 0.40 0.19 kNn 0.28 kNn 0.93 kN 1.38 kN Area (A) = modulus (Zx) = Stiffness (Ix) = f elasticity (E) = e restrained - Cl 3.2 Cl 3.2.4	410 mm N (Y)es n (Max at 410mi n (Max at 410mi 1 (Max at 410mi 1 4050 mmi 1 2.7 x106 1 4000 MPa 3.2 f'b = f's = tant (pb) =	from LHS i,(N)o m) n) - Table H2.1 42.0 MPa 3.6 MPa	
w(dl- p(dl B ending and S De	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.II)* = 1.35*wdl+1.5 w* = 1.2*wdl- iI+ΨI.II)* = 1.35*pdl+1.5 p* = 1.2*pdl- Shear Capacity - Cl 3.2 & Member = 90m Description = F17 esign depth (dD) = esign width (dW) = S1=1. Stren ØM(dI) = Ø*(k1=0.57)	kN or (\Psu) = or (\Psu) = *\Psi	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN 0.00 kN 0.00 kN D HW pod (dD) ^{0.5} = k12 = tor (ø) =	Shear using I (Ψsp) = (Ψlp) = M(dl+Ψl.ll)* = V* = V* = Section Modulus of 7.91 For comp. edge 1.000 for pb*S < 10 - 0.95 Table 2.1	Position = PL at support = 1.00 0.40 0.19 kNn 0.28 kNn 0.93 kN 1.38 kN Area (A) = modulus (Zx) = Stiffness (Ix) = f elasticity (E) = e restrained - Cl 3.2 Cl 3.2.4 Material cons	410 mm N (Y)es n (Max at 410mi n (Max at 410mi 10 (Max at 410mi 11000 MPa 3.2 f'b = f's = tant (pb) = ctor (k1) =	from LHS 6,(N)o m) m) mm³ mm⁴ - Table H2.1 42.0 MPa 3.6 MPa 0.94 (rb=0.54)	
w(dl- p(dl B ending and S De	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.II)* = 1.35*wdl+1.5 w* = 1.2*wdl- iI+ΨI.II)* = 1.35*pdl+1.5 p* = 1.2*pdl- Shear Capacity - Cl 3.2 & Member = 90m Description = F17 esign depth (dD) = esign width (dW) = S1=1. Stren ØM(dI) = Ø*(k1=0.57)	kN or (\Psu) = cor (\Psu) = *\Psi	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN 0.00 kN 0.00 kN D HW pod (dD) ^{0.5} = k12 = tor (ø) =	Shear using I (Ψsp) = (Ψlp) = M(dl+Ψl.ll)* = V(dl+Ψl.ll)* = V* = Section Modulus of 7.91 For comp. edge 1.000 for pb*S < 10 - 0.95 Table 2.1 1.38 kNm	Position = PL at support = 1.00 0.40 0.19 kNm 0.28 kNm 0.93 kN 1.38 kN Area (A) = modulus (Zx) = Stiffness (Ix) = f elasticity (E) = e restrained - Cl 3.2 Cl 3.2.4 Material cons Duration fa Moisture fa	410 mm N (Y)es n (Max at 410mi n (Max at 410mi 10 (Max at 410mi 11000 MPa 3.2 f'b = f's = tant (pb) = ctor (k1) =	from LHS (N)o m) m)	
w(dl- p(dl B ending and S De	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.II)* = 1.35*wdl+1.5 w* = 1.2*wdl- II+ΨI.II)* = 1.35*pdl+1.5 p* = 1.2*pdl- Shear Capacity - Cl 3.2 & Member = 90m Description = F17 esign depth (dD) = esign width (dW) = S1=1. Stren ØM(dI) = Ø*(k1=0.57) ØM = Ø*k1	kN or (\Psu) = cor (\Psu) = *\Psi	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN 0.00 kN 0.00 kN D HW ood '(dD) ^{0.5} = k12 = tor (Ø) = 'f'b*Zx = 'f'b*Zx =	Shear using I (Ψsp) = (Ψlp) = M(dl+Ψl.ll)* = V(dl+Ψl.ll)* = V* = Section Modulus of 7.91 For comp. edge 1.000 for pb*S < 10 - 0.95 Table 2.1 1.38 kNm	Position = PL at support = 1.00 0.40 0.19 kNn 0.28 kNn 0.93 kN 1.38 kN Area (A) = modulus (Zx) = Stiffness (Ix) = f elasticity (E) = e restrained - Cl 3.2 Cl 3.2.4 Material cons Duration fa Moisture fa Temp. fa	410 mm N (Y)es 1 (Max at 410mi 1 (Max	from LHS 6,(N)o m) m) m	
w(dl- p(dl B ending and S De	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.II)* = 1.35*wdl+1.5 w* = 1.2*wdl- il+ΨI.II)* = 1.35*pdl+1.5 p* = 1.2*pdl Shear Capacity - Cl 3.2 & Member = 90m Description = F17 esign depth (dD) = esign width (dW) = S1=1. Stren ØM(dI) = Ø*(k1=0.57) ØM = Ø*k1 ØV(dI) = Ø*(k1=0.57)	kN or (\Psu) = cor (\Psu) = *\Psi \times \text{WI} = +1.5*\Psi = -1.5*\Psi =	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN 0.00 kN 0.00 kN D HW pod (dD) ^{0.5} = k12 = tor (Ø) = f'b*Zx = f'b*Zx = 2/3*A) =	Shear using I (\Psp) = (\Psp) = (\Psp) = (\Psp) = M(dI+\Psi . \text{II}) * = M* = V(dI+\Psi . \text{II}) * = V* = Section Modulus of 7.91 For comp. edge 1.000 for pb*S < 10 - 0.95 Table 2.1 1.38 kNm 1.94 kNm	Position = PL at support = 1.00 0.40 0.19 kNn 0.28 kNn 0.93 kN 1.38 kN Area (A) = modulus (Zx) = Stiffness (Ix) = f elasticity (E) = e restrained - Cl 3.2 Cl 3.2.4 Material cons Duration fa Moisture fa Temp. fa	4050 mm ² 61 x10 ³ 2.7 x10 ⁶ 14000 MPa 3.2 f'b = f's = tant (pb) = ictor (k1) = ictor (k4) = ictor (k6) = ictor (k9) =	from LHS b,(N)o m) m) m - Table H2.1 42.0 MPa 3.6 MPa 0.94 (rb=0.54) 0.80 1.00 1.00	
w(dl- p(dl B ending and S De	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.II)* = 1.35*wdl+1.5 w* = 1.2*wdl- il+ΨI.II)* = 1.35*pdl+1.5 p* = 1.2*pdl Shear Capacity - Cl 3.2 & Member = 90m Description = F17 esign depth (dD) = esign width (dW) = S1=1. Stren ØM(dI) = Ø*(k1=0.57) ØM = Ø*k1 ØV(dI) = Ø*(k1=0.57)	kN or (\Psu) = cor (\Psu) = *\Psi \text{*w 1} = +1.5*\psi = -1.5*\psi = -1.5*	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN 0.00 kN 0.00 kN D HW pod (dD) ^{0.5} = k12 = tor (Ø) = f'b*Zx = f'b*Zx = 2/3*A) =	Shear using I (\Psp) = (\Psp) = (\Psp) = (\Psp) = (\Psp) = M(dI+\Psi . \text{II}) * = V' = V' = V' = Section Modulus of 7.91 For comp. edge 1.000 for pb*S < 10 - 0.95 Table 2.1 1.38 kNm 1.94 kNm 5.26 kN	Position = PL at support = 1.00 0.40 0.19 kNm 0.28 kNm 0.93 kN 1.38 kN Area (A) = modulus (Zx) = Stiffness (Ix) = f elasticity (E) = e restrained - Cl 3.2 Cl 3.2.4 Material cons Duration fa Moisture fa Temp. fa Sharing fa	410 mm N (Y)es 1 (Max at 410mi 1 (Max at 410mi 1 (Max at 410mi 1 4050 mm ² 61 x10 ³ 2.7 x10 ⁶ 14000 MPa 3.2. f'b = f's = tant (pb) = ictor (k1) = ictor (k4) = ictor (k6) = ictor (k9) = (mod.b) =	from LHS b,(N)o m) m) m 42.0 MPa 3.6 MPa 0.94 (rb=0.54) 0.80 1.00 1.00 1.00	
w(di- p(di Bending and S De De	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.II)* = 1.35*wdi+1.5 w* = 1.2*wdi- II+ΨI.II)* = 1.35*pdi+1.5 p* = 1.2*pdi Shear Capacity - Cl 3.2 & Member = 90m Description = F17 esign depth (dD) = esign width (dW) = S1=1. Stren ØM(dI) = Ø*(k1=0.57 ØM = Ø*k1 ØV = Ø	kN or (Ψsu) = cor (Ψlu) = *Ψ *w = +1.5*w = *Ψ *p = l+1.5*p = l+1.5*p = 3. Cl 3.2.5 om x 45mm F17 Kl seasoned hardwo 90 mm 45 mm 25*dD/dW*(Lay/ gth reduction fac)*k4*k6*k9*k12* 1.*k4*k6*k9*k12* 2.57)*k4*k6*f's*(2.5*k1*k	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN 0.00 kN 0.00 kN 0.00 dN 0.00	Shear using I (Ψsp) = (Ψlp) = M(dl+Ψl.II)* = M* = V(dl+Ψl.II)* = V* = Section Modulus of 7.91 For comp. edge 1.000 for pb*S < 10 - 0.95 Table 2.1 1.38 kNm 1.94 kNm 5.26 kN 7.39 kN	Position = 1.00 0.40 0.19 kNn 0.28 kNn 0.93 kN 1.38 kN Area (A) = modulus (Zx) = Stiffness (Ix) = f elasticity (E) = e restrained - Cl 3.2 Cl 3.2.4 Material cons Duration fa Moisture fa Temp. fa Sharing fa Size modifer	4050 mm ² 61 x10 ³ 2.7 x10 ⁶ 14000 MPa 3.2 f'b = f's = tant (pb) = ictor (k1) = ictor (k9) = ictor (k9) = f (mod.b) = f (mod.b) =	from LHS 6,(N)o m) m) m) m 42.0 MPa 3.6 MPa 0.94 (rb=0.54) 0.80 1.00 1.00 1.00 1.00 1.00	
w(di- p(di Bending and S De De	Point loads Dead load (pdl) = Live load (pll) = Short term LL fact Long term LL fact +ΨI.II)* = 1.35*wdl+1.5 w* = 1.2*wdl- il+ΨI.II)* = 1.35*pdl+1.5 p* = 1.2*pdl Shear Capacity - Cl 3.2 & Member = 90m Description = F17 esign depth (dD) = esign width (dW) = S1=1. Stren ØM(dI) = Ø*(k1=0.57) ØM = Ø*k1 ØV(dI) = Ø*(k1=0.57)	kN or (\Psu) = cor (\Psu) = *\Psi \text{*w 1} = +1.5*\psi = -1.5*\psi = -1.5*	1.00 0.33 2.27 kN/m 3.36 kN/m 0.00 kN 0.00 kN 0.00 kN D HW od (dD) ^{0.5} = k12 = tor (ø) = f'b*Zx = f'b*Zx = 2/3*A) = 2/3*A) = 2/3*A) =	Shear using I (Ψsp) = (Ψlp) = M(dl+Ψl.II)* = M* = V(dl+Ψl.II)* = V* = Section Modulus of 7.91 For comp. edge 1.000 for pb*S < 10 - 0.95 Table 2.1 1.38 kNm 1.94 kNm 5.26 kN 7.39 kN	Position = PL at support = 1.00 0.40 0.19 kNm 0.28 kNm 0.93 kN 1.38 kN Area (A) = modulus (Zx) = Stiffness (Ix) = f elasticity (E) = e restrained - Cl 3.2 Cl 3.2.4 Material cons Duration fa Moisture fa Temp. fa Sharing fa	4050 mm (Max at 410min (Max at 410min (Max at 410min for 1, 10 min for 1	from LHS 5,(N)o m) m) m) a mm³ mm⁴ - Table H2.1 42.0 MPa 3.6 MPa 0.94 (rb=0.54) 0.80 1.00 1.00 1.00 1.00	

1kN midspan δ =

0.3 mm

2.0

j2 =

PROPOSED DEVELOPMENT: D/S 3 BED D/GARAGE RESIDENCE

PROJECT ADDRESS: NO 17, FROME COURT, TAYLORS HILL

PROJECT: FOUNDATION & BEAMS DESIGN

CLIENT: MEGA HOMES

DATE: 01/09/2015

WB CIVIL STRUCTURAL ENGINEERS ABN: 84119322438

PRIYAN WIJEYERATNE, EC 19060 9 NUMERING COURT, MELTON 3337

MOBILE: 0401023328

EMAIL: wbcseng@gmail.com.

CLIENT: Mr & Mrs P.A. & P.C. FERNANDO

WB CIVIL STRUCTURAL ENGINEERS

ENGINEERS & BUILDERS ABN: 84119322436

OFFICE:
NO: 9, NUMERING COURT, MELTON, VIC 3337
Mobile: 0401023328 / Ph: 03 9746 0089
Emall: wbcseng@gmail.com

Registered Civil/Structural Engineer Priyan Wijeyeratne EC 19060

PROJECT:
D/S 3 BED RESIDENCE
PROJECT ADDRESS:
No: 17, Frome Court,

SHEET NO:

Taylors Hill

A	Remarks/comments	Date	Aprv.
Rev.	Remarks/comments	Date	Aprv

STANDARDS, MATERIALS, AND WORKMANSHIP REQUIREMENTS

THESE NOTES TO BE FOLLOWED UNLESS NOTED OTHERWISE BY THE ENGINEER

GENERAL NOTES

- G1. THESE DRAWINGS SHALL BE READ IN CONJUNCTION WITH SPECIFICATION AND OTHER WORKING DRAWINGS. ANY DISCREPANCIES SHALL BE NOTIFIED TO THE ENGINEER IMMEDIATELY
- G2. ALL DIMENSIONS RELEVANT TO SETTING OUT AND OFF-SITE WORK SHALL BE VERIFIED BY THE CONTRACTOR BEFORE CONSTRUCTION AND FABRICATION IS COMMENCED. THE ENGINEER'S DRAWINGS SHALL NOT BE SCALED.
- G4.MATERIALS AND WORKMANSHIP SHALL BE IN ACCORDANCE WITH THE SPECIFICATION, THE CURRENT REVISION OF ALL RELEVANT SAA CODES, THE REQUIREMENTS OF THE VICTORIAN BUILDING REGULATIONS, THE BUILDING CODE OF AUSTRALIA AND THE RELEVANT AUTHORITY.
- G5. CONTRACTORS SHALL ENSURE THAT LOCATIONS OF ALL UNDERGROUND SERVICES ARE IDENTIFIED PRIOR TO COMMENCEMENT OF WORKS AND EXCAVATIONS. THE WORK COMMENCES.

G6. RELEVANT STANDARDS USED:

1	Structural Steel Design	AS4100
2	Structural Reinforced Concrete Design	AS3600
3	Structural Timber Framing	AS1684
4	Timber Structures Design	AS1720
5	Domestic Slab Design	AS2870
6	Brickwork	AS3700
6	Wind Analysis & Design	AS1170
7	Access & Mobility	AS1428
8	Welding	AS1554
9	Bolts & Nuts	AS1252
10	Cold formed Steel	AS 4600
11	Bolts & Nuts	AS1252
12	Stormwater Drainage	AS3500
13	Glazing	AS1288/AS2047
14	Water Proofing to Wet Areas	AS3740/BCA 4-3-1

LIVE LOADS

L1. THE STRUCTURAL WORK SHOWN ON THESE DRAWINGS HAS BEEN DESIGNED FOR THE FOLLOWING LIVE LOADS:-

ROOF 0.25 kPa OR [1.8/ A+ 0.12] WHICHEVER IS GREATER

FLOOR 1.5 kPa. (OR AS USED FOR COPUTATIONS)

Balcony 2.0 kPa (OR AS USED FOR COPUTATIONS)

TEMPORARY BRACING

- TBI. DURING CONSTRUCTION THE STRUCTURE SHALL BE MAINTAINED IN A STABLE CONDITION AND NO PART SHALL BE OVER STRESSED.
- TB2. THE CONTRACTOR SHALL PROVIDE AND INSTALL ANY ADDITIONAL BRACING EQUIPMENT NECESSARY TO ADEQUATELY AND SAFELY HOLD THE STRUCTURE IN POSITION DURING CONSTRUCTION.

CONCRET

- C1. All CONCRETE AND WORKMANSHIP TO CONFORM TO THE REQUIREMENTS OF AS 3600.
- C2 ALL INSET CONCRETE SHALL BE A CHARACTERISTIC STRENGTH TO BE AS NOTED BELOW AT 28 DAYS UNLESS NOTED OTHERWISE:-

BLINDING CONCRETE 15 MPa STRIP FOOTINGS 20 M Pa.

PAD FOOTINGS 20 MPa SLAB ON GROUND 20 MPa

ALL OTHER MEMBERS TO BE 32 MPa (OR AS NOTED OTHERWISE).

HOTED OTHERWICE,

MAXIMUM SLUMP TO BE 75mm
MAXIMUM AGGREGATE TO BE 20mm

C3 CONCRETE ELEMENTS S H O W N ON THE DRAWINGS MUST NOT BE REDUCED IN ANY WAY WITHOUT THE ENGINEER'S APPROVAL. NO

HOLES, CHASES DRY EMBEDMENT'S OTHER THAN THOSE SHOWN WILL BE PERMITTED IN ANY CONCRETE ELEMENTS WITHOUT THE ENGINEER'S APPROVAL

A. REINFORCEMENT NOTATION:

N - DENOTES HOT-ROLLED DEFORMED BARS TO AS 4671

RL - DENOTES RECTANGULAR REINFORCEMENT FABRIC TO AS/NZS 4671

SL - DENOTES SQUARE REINFORCEMENT FABRIC TO AS/NZS 4671

LXTM - DENOTES TRENCH MESH REINFORCEMENT TO AS/NZS 4671

LAPPING REINFORCEMENT:

REINFORCEMENT SPLICES SHALL BE LAPSPLICES AS REQUIRED BY THE CURRENT CONCRETE CODE UNLESS NOTED IN THE DRAWINGS. FOR FABRIC, THE MINIMUM SPLICE SHALL BE 22Dmm MINIMUM WITH THE OVERLAP MEASURED BETWEEN THE OUTERMOST WIRES AND NOT LESS THAN THE PITCH OF THE SECONDARY WIRES.

- C5. CLEAR COVER TO REINFORCEMENT AS NOTED ON THE DRAWINGS.
- C6. CONCRETE COVER TO BE MAINTAINED BY THE USE OF APPROVED BAR CHAIRS AND/OR CONCRETE BLOCKS SPACED AT APPROXIMATELY 1000 CROSS CTS. CONDUITS, PIPES ETC. ARE NOT TO BE PLACED IN CONCRETE COVER.
- C7. CONCRETE TO BE KEPT FREE OF SUPPORTING BRICKWORK BY TWO LAYERS OF A SUITABLE MEMBRANE; VERTICAL FACES OF CONCRETE TO BE KEPT FREE BY 12mm THICKNESS OF BITUMINOUS CANEITE.
- C8. ALL MILD STEEL BRACKETS, SLOTS ETC. EMBEDDED IN THE CONCRETE SHALL BE HOT-DIP GAI VANISED.
- C9. DIRECTION OF MESH ON PLAN. INDICATES THE DIRECTION OF MAIN WIRES.
 WHICH SHOULD BE PLACED NEAREST THE RELEVANT SLAB SURFACE.
- C10. ALL CONCRETE SHALL BE PROPERLY COMPACTED BY MEANS OF APPROVED VIBRATORS
- C11. CONSTRUCTION JOINTS WHERE NOT SHOWN, SHALL BE LOCATED TO THE APPROVAL OF THE ENGINEER.
- C12. FORM WORK SHALL NOT BE STRIPPED UNTIL 3 DAYS HAS ELAPSED FROM TIME OF POUR UNLESS APPROVED OTHERWISE BY THE ENGINEER NO LOADS APPLIED FOR 28 DAYS
- C13. ENGINEER TO BE NOTIFIED 48 HOURS PRIOR TO POURING CONCRETE.
- C14. ALL PIPE WORK CAST INTO CONCRETE IS TO BE SLEEVED OR LAGGED WITH APPROPRIATE COMPRESSIBLE MATERIAL FOR THE FULL LENGTH OF EMBEDMENT.

BRICKWORK - BLOCKWORK

- B1. ALL WORKMANSHIP AND MATERIALS SHALL BE IN ACCORDANCE WITH AS 3700.
- B2 LOAD BEARING BRICKS SHALL HAVE A MINIMUM CHARACTERISTIC UNCONFINED STRENGTH OF 20 MPa AND LOAD BEARING BLOCKS SHALL HAVE A CHARACTERISTIC UNCONFINED COMPRESSIVE STRENGTH OF 15 MPa UNITES OTHERWISE NOTED.

- B3. MORTAR SHALL BE FRESHLY PREPARED AND UNIFORMLY MIXED IN THE RATIO OF ONE PART CEMENT ONE PART LIME AND SIX
- B4. BLOCKWORK CORE FILLING CONCRETE COMPRESSIVE STRENGTH AT 28 DAYS SHALL BE: 20 MPa.
- B5. BRICKWORK OR BLOCKWORK SUPPORTING CONCRETE SHALL BE
 TROWELLED SMOOTH AND SEPARATED AT THE BEARING SURFACE
 BY A LAYER OF GALVANIZED STRIP OR TWO LAYERS OF
 BITUMINOUS BUILDING PAPER
- B6 JOINT REINFORCEMENT WHERE SHOWN ON THE PLAN SHALL BE AT EVERY 600mm. WITH AN EXTRA COURSE OVER AND UNDER WINDOW OPENINGS USING 'RECTOR', 'BLOTTER' OR SIMILAR
- B7. NO BRICKWORK OR BLOCKWORK WHICH IS SUPPORTED BY CONCRETE SHALL BE ERECTED UNTIL SUPPORTING FORMWORK HAS BEEN REMOVED.
- B8. CAVITY WALL TIES TO BE IN ACCORDANCE WITH THE CURRENT BCA REQUIREMENTS

STRUCTURAL STEELWORK

- S1. ALL WORKMANSHIP, FABRICATION, ERECTION AND MATERIALS SHALL BE IN ACCORDANCE WITH AS 4100.
- S2. SHOP DRAWINGS SHALL BE SUBMITTED TO THE ENGINEER AND APPROVED BEFORE FABRICATION IS COMMENCED.
- S3 EXCEPT AS SHOWN, STEEL MEMBERS SHALL NOT BE SPLICED WITHOUT THE PRIOR APPROVAL OF THE ENGINEER
- S4. WELDING OF STEELWORK TO BE IN ACCORDANCE WITH AS 1554 AND UNLESS OTHERWISE NOTED, SHALL BE 6mm FILLET WELD ALL AROUND.
- S5. ALL HIGH STRENGTH BOLTS SHALL BE ASSEMBLED AND INSPECTED IN ACCORDANCE WITH AS 1252.

8.8/S BOLTS ARE HIGH STRENGTH BOLTS. 8.8/TB BOLTS ARE HIGH STRENGTH BEARING TYPE SLOTS BIB/FT. BOLTS ARE HIGH STRENGTH FRICTION TYPE BELTS

- S6. STEEL WORK TO BE ENCASED IN CONCRETE SHALL NOT BE PAINTED, BUT SHALL BE GIVEN ONE COAT OF CEMENT WASH
- S7. STEEL WORK NOT ENCASED OR OTHERWISE NOTED SHALL BE GIVEN ONE COAT OF APPROVED METALLIC PRIMER AT LEAST 48 HOURS BEFORE DISPATCH.
- S8 STEEL WORK TO BE ENCASED SHALL BE WRAPPED WITH 3mm WIRE AT 100mm PITCH AND ENCASED IN 4:2:1 CONCRETE WITH A MINIMUM COVER OF 50mm.
- S9. ALL STEEL WORK BELOW GROUND SHALL BE ENCASED IN CONCRETE AND IF EXPOSED, GALVANISE TO HAVE 600 g/sq.m OF GALVANISE.
- S10. ALL CLEATS AND DRILLING FOR FIXING OF ARCHITECTURAL ELEMENTS, TIMBER FRAMING ETC. SHALL BE PROVIDED BY THE FABRICATOR. THE STRUCTURAL DRAWINGS ARE DEEMED TO PROVIDE FOR ALL THE NECESSARY MAJOR STRUCTURAL. STEEL WORK AND CONNECTIONS. MINOR NON-STRUCTURAL ITEMS SUCH AS TRIMMERS, CLEATS AND OTHER ITEMS SHOWN ON THE ARCHITECTURAL DRAWINGS, BUT NOT SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE ALLOWED FOR BY THE CONTRACTOR IN HIS TENDER PRICE, AND DETAILED.
- S11 THE CONTRACTOR'S HALL PROVIDE BRACING AND LEAVE IN PLACE UNTIL PERMANENT BRACING ELEMENTS ARE CONSTRUCTED OR CLEATS, ETC. AS IS NECESSARY TO STABILISE THE STRUCTURE DURING ERECTION.
- S12. ALL UB. UC AND PFC MEMBERS TO HAVE Fy = 300 MPa MINIMUM

TIMBER NOTES

- T1. ALL TIMBER MATERIALS, WORKMANSHIP AND PRACTICE SHALL BE IN ACCORDANCE WITH THE TIMBER ENGINEERING CODE AS 1720 AND THE TIMBER FRAMING CODE AS 1684. ALL LINTELS, BEAMS ETC.

 NECESSARY FOR THE PROPER SUPPORT OF ROOF FRAMING SHALL BE PROVIDED EITHER AS SHOWN ON THE DRAWINGS OR AS REQUIRED IN ACCORDANCE WITH AS 1684.
- T2. All TIMBER SHALL BE IN ACCORDANCE WITH THE STRESS GRADE NOMINATED ON THE DRAWINGS AND SHALL BE FREE OF DEFECTS, SPLITS, ROT ETC. THE ENGINEER RESERVES THE RIGHT TO REJECT UNSUITABLE TIMBER
- T3. All BOLTED TIMBER CONNECTIONS SHALL BE MADE WITH M12
 BOLTS UNLESS NOTED OTHERWISE MILO STEEL WAS HERS SHALL
 BE PLACED UNDER THE HEAD AND NUT IN ACCORDANCE WITH THE
 TABLE BELOW:WASHER SIZE

 50x50x3mm
 BOLTS UP TO M12

 65x65x5mm
 M16,M2D BOLTS

 75x75x5mm
 BOLTS G R F A T F R THAN MO

ALL EXPOSED BOLTS AND FITTINGS SHALL BE HOT-DIP

- T4. ALL BOLTS SHALL BE RE-TIGHTENED AT THE COMPLETION OF THE CONTRACT AND AGAIN AT THE END OF THE MAINTENANCE PERIOD. BOLTS WHICH ARE INACCESSIBLE AT THE COMPLETION OF THE STRUCTURAL WORKS SHALL BE RE-TIGHTENED IMMEDIATELY BEFORE BRIDG BRIDTAIN.
- TSO ALL PROPRIETARY FIXINGS SHALL BE INSTALLED IN STRICT ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS AND SPECIFICATIONS, OR AS NOTED ON THE STRUCTURAL DRAWINGS
- T6. THE STRUCTURAL DRAWINGS ARE DEEMED TO PROVIDE FOR ALL NECESSARY MAJOR STRUCTURAL TIMBER AND CONNECTIONS.
 MINOR NON-STRUCTURAL ITEMS SUCH AS TRIMMERS, CLEATS
 AND OTHER ITEMS AS SHOWN ON THE ARCHITECTURAL DRAWINGS,
 BUT ARE NOT SHOWN ON THE STRUCTURAL DRAWINGS, SHALL BE
 ALLOWED FOR BY THE CONTRACTOR IN HIS TENDER PRICE, AND
 DETAILED AT THE SHOP DRAWING STAGE IF REQUIRED

CLIENT: Mr & Mrs P.A. & P.C. FERNANDO

WB CIVIL STRUCTURAL ENGINEERS

ENGINEERS & BUILDERS ABN: 84119322436

OFFICE:
NO: 9, NUMERING COURT, MELTON, VIC 3337
Mobile: 0401023328 / Ph: 03 9746 0089
Email: wbcseng@gmail.com

Registered Civil/Structural Engineer Priyan Wijeyeratne EC 19060

PROJECT:
D/S 3 BED RESIDENCE

PROJECT ADDRESS: No: 17, Frome Court, Taylors Hill

SHEET NO:

SITE DRAINAGE REQUIREMENTS

TYPICAL STORMWATER DRAINAGE

Natural ground level

SERVICE TRENCH EXCAVATION ADJACENT TO FOUNDATIONS

MAINTENANCE:

- THE MAINTENANCE OF THE SITE AROUND A NEW HOME IS AN IMPORTANT FACTOR IN THE LONG-TERM PERFORMANCE OF THE FOOTING SYSTEM
- THE PRIMARY OBJECTIVE OF THIS MAINTENANCE IS TO MINIMISE THE VARIATION IN SOIL MOISTUE LE
 AROUND THE FOOTING THAT COULD LEAD THE EXCESSIVE SOIL MOVEMENT AND POSSIBLE DISTRESS
 THE SUPERSTUCTURE ANO/OR FOOTING. WHEN THE SLAB FORMS PART OF THE TERMITE BARRIER SY
 FOR THE HOUSE, THEN IT IS ASLO NECESSARY TO MAINTAIN THE EFFECTIVENESS OF THAT BARRIER V
 APPOPRIATE MAINTANCE ACTIVITIES.
- WHEN A CONCRETE SLAB-ON-GROUND IS USED AS PART OF THE TERMITE BARRIER SYSTEM AS OUTLI
 AS3660.0. THEN IT CANNOT BE TOO HIGHLY STRESSES THAT REGULAR INSPECTION AND MAINTENANC
 THE SLAB SURROUNDING BY A COMPETENT PROFESSIONAL IS REQUIRED TO ENSUE THAT ANY TERMI
 INFESTATION IS DETECTED AND TREATED PROMPTLY.
- ONGOING MAINTENANCE AND INSPECTION ON A REGULAR BASIS IS A REQUIREMENT OF AS3660.1 AND
 OWNER SHOULD BE CLEARLY ADVISED IF THEIR RESPONSIBILITIES TO ENSURE THAT THEIR INVESTME
 PROPERLY PROTECTED.
- LEAKING TAPS, DOWNPIPES, SEWERS GUTIERS AND DRAINAGE CAN ALSO AFFECT THE MOISTURE COI
 OF THE SOIL AND THESE MUST BE INSPECTE D REGULARLY TO ENSURE AGAINST DAMAGE TO THE
 FOOTINGS. SIMILARLY, GUTIERS, DOWNPIPES AND COLLECTION POINTS CAN GET BLOCKED WITH LEAV
 AND OTHER DEBRIS, PREVENTING THE EFFECTIVE DRAINAGE OF STORMWATER AWAY FROM THE HOU
 AGAIN, REGULAR INSPECTIONS AND MAINTENANCE SHOULD BE CARRIED OUT TO PREVENT BLOCKAGE
- IT IS IMPORTANT FOR BUILDER TO MAKE THE HOMEOWNER AWARE OF THE MAINTENANCE ISSUES
 ASSOCIATED WITH ENSURING THE LONG-TERM PERFORMANCE OF THE FOOTING SYSTEM

DRAINAGE REQUIREMENTS

GENERAL

THESE DRAINAGE AND OTHER REQUIREMENTS FORM PART OF THE FOOTING DESIGN

DEFECTIVE SURFACE DRAINAGE IS A COMMON FACTOR IN REACTIVE CLAY FOUNDATION MOVEMENT PROBLEMS. THE EFFECTIVE DRAINAGE OF THE SITE IS A PREREQUISITE FOR SATISFACTORY PERFORMANCE OF A FOUNDATION SYSTEM

THE BUILDER'S RESPONSIBILITY IS TO MAKE THE OWNER AWARE OF THE IMPORTANCE OF SURFACE DRAINAGE, EVEN IF IT IS NOT PART OF BUILDER'S CONTRACT TO CONSTRUCT SURFACE DRAINAGE.

LANDSCAPING AND OTHER FINISHING SITE WORKS MUST BE INCORPORATED WITH WELL DESIGNED SURFACE DRAINAGE TO MITIGATE ANY ADVERSE IMPACT ON A FOUNDATION SYSTEM

DRAINAGE NOTES

- ALL SURFACE DRAINAGE WORKS SHALL BE INSTALLED IN ACCORDANCE WITH CLAUSE 5.6.3 DRAINAGE REQUIREMENTS OF AS 2871-201 1, WHEREIN FOR BUILDINGS ON MODERATELY, HIGH AND REACTIVE SITES
- SURFACE DRAINAGE SHALL BE CONTROLLED THROUGHOUT CONSTRUCTION AND BE COMPLETED BY THE FINISH OF CONSTRUCTION
- . THE BASES OF TRENCHES SHALL SLOPE AWAY FROM THE BUILDING
- WHERE PIPES PASS UNDER THE FOOTING SYSTEM, CLAY PLUGS ARE TO BE ADOPT ED TO PREVENT THE INGRESS OF WATER
- FOR BUILDINGS ON HIGHLY REACTIVE SITES, DRAINER SHALL PROVIDE DRAINAGE
 ARTICULATION TO ALL STORMWATER, SANITARY PLUMBING DRAINS AND DISCHARGE
 PIPES IN ACCORDANC E WITH CLAUSE 5.6.4 PLUMBING REQUIREMENTS WHEREIN
 FLEXIBLE JOINTS IMMEDIATELY OUTSIDE BUILDING AND COMMENCING WITHIN 1M OF
 THE BUILDING PERIMETER ARE REQUIRED TO ACCOMMODAT E THE REQUIRED
 DIFFERENTIAL MOVEMENT BASED ON THE SOIL CLASSIFICATION. REFER TO TABLE
 BELOW FOR 'MIN. REQUIREMENTS FOR EXPANS ION AND ALLOWABLE IN FITTINGS
- FLEXIBLE JOINTS ARE REQUIRED AT ENTRY & EXIT OF SLAB/FOOTINGS, SURFACE WATER MUST BE DIVERTED AWAY FROM THE DWELLING AND GRADED AWAY FROM ALL FOUNDATIONS TO GIVE A SLOPE OF NOT LESS THAN 50mm OVER THE FIRST 1000mm FROM THE DWELLING
- SUBSURFACE DRAINS TO REMOVE GROUND WATER SHALL BE DETAILED BY THE
 DESIGN ENGINEER. FURTHERMORE, DAMP-PROOF MEMBRANE IN ACCORDANC E
 WITH CLAUSE 5.3.3 OF AS 2870 SHALL BE INSTALLED FOR GROUNDWATER
 DRAINAGE ON AGGRESSIVE SOILS

LANDSCAPING

- THE WORKS ON GARDENS SHALL NOT IMPACT ON DRAINAGE REQUIREMENTS, SUBFLOOR VENTILATION AND WEEPHOLE DRAINAGE SYSTEMS. GARDEN BEDS ADJACENT TO THE BUILDING SHALL BE AVOIDED CARE SHALL BE TAKEN TO AVOID OVERWATERING OF GARDENS CLOSE TO THE BUILDING FOOTINGS. (AS 2870 CI. B2 3(b))
- PLANTING OF TREES SHALL BE AVOIDE D NEAR THE FOUNDATION OF A
 BUILDING OR NEIGHBOURING BUILDING AS THEY CAN CAUSE DAMAGE DUE TO
 DRYING OF THE CLAY AT SUBSTANTIAL DISTANCES TO REDUCE THE
 POSSIBILITY OF DAMAGE TREES SHOULD BE RESTRICTED TO A DISTANGE
 FROM THE HOUSE AS FOLLOWS.
- 11/2 x MATURE TREE HEIGHT FOR CLASS E SITES.
- 11/2 x MATURE TREE HEIGHT FOR CLASS H1 AND CLASS H2 SITES
- 11/2 x MATURE TREE HEIGHTFOR CLASS M SITES
- WHERE ROWS OR GROUPS OF TREES ARE INVOLED, THE DISTANGE FROM THE BUILDING SHOULD BE INCREASED. REMOVAL OF TREES FROM THE SITE CAN ALSO CAUSE SIMILAR PROBLEMS (AS 2870 82.3 (c))

MINIM	UM REQUIRE	MENTS FOR SEWER RE	TICULATION	
SEWER EXIT POINTS		MIN. EXPANSION	ALLOWABLE	LAGGING
SWIVEL	EXPANDER	JOINT CAPACITY	ROTATION	
0	0	•	-	MIN. 20
1	1	60MM	15°	MIN. 40
2	1	90MM	15°	MIN. 40
2	1	120MM	15°	MIN. 40
2	1	90MM (UNO)	15°	MIN. 40
	SEWER	SEWER EXIT POINTS	SEWER EXIT POINTS MIN. EXPANSION	SWIVEL EXPANDER JOINT CAPACITY ROTATION 0 0 - - 1 1 60MM 15° 2 1 90MM 15° 2 1 120MM 15°

SITE DRAINAGE REQUIREMENTS

CONSTRUCTION STAGE

THE GEOTECHNICAL REPORT HAS RECOMMED THE USE OF A CERTAIN FOOTING THAT IS APPROPRIATE FOR THIS SITE WHILEMAKING THIS RECOMMENDATION IT HAS BEEN ASSUMES THAT CERTAIN SITE ORANIAGE REQUIREMENTS AS PER AS2670-2001 HAS BEEN

DURING THE CONSTRUCTION OF THE FOOTING THE FOLLOWING SITE DRAINAGE REQUIREMENTS ARE LISTED AS BEING PART OF THE FINAL FOOTING DESIGN BY THE DESIGN ENGINEER.

- . MUST PREVENT WATER PONDING AGAINST OR NEAR THE FOOTING
- THE GROUND IN THE IMMEDIATE VICINITY OF THE PERIMETER FOOTING SHALL BE GREADED TO A FALL OF SOMETHIN AWAY FROM THE POOTING OVER A DISTANCE OF 1000mm (1.20) AND SHAPED TO PREVENT PONDING OF WATER (THIS INCLUDES THE GROUND UPHILL FROM THE FOOTING ON A CUTIFILL ST.E.). WHERE FILLING IS PLACED ADJACENT TO THE BUILDING THE FILLING SHALL BE COMPACTED AND GRADED TO BUSURE DRAINAGE AWAY FROM FOOTINGS OR.
- ALL COLLECTED STORMWATER MUST BE DISCHARGED TO A LEGAL POIT OF DISCHARGE
- SURFACE DRAINAGE OF THE SITE SHALL BE CONTROLLED FROM THE START OF THE SITE PREPARATION AND CONSTRUCTION SURFACE DRAINAGE INCLUDES SURFACE WATER RUN-OFF AND BUILDING WATER IRCOFFLOOR/CONCRETE;
- . ALL WATER RUN-OF FISHALL BE CONTROLLED AT ALL TIMES
- USETEMPORARY DOWNPIPES TO COLLECT WATER FROM A ROOFED BUILDING FRAME
- WHEN SILT PITS ARE USED TO GATHER SURFACE WATER FROM AREAS ADJACENT TO THE FOOTINGS THESE SILT PITS ARE TO BE AT LEAST 1000mm AWAY FROM THE FOOTING AND CONNECTED TO THE STORMWATER SYSTEM WATER A SOLID PIPE
- STORMWATER DRAINS SHALL SE AT LEAST SOMM AND HAVE A MIRRMUM FALL OF 1 109 AND 100 mm COVER UNDER THE SOIL AND OR PAYED AREAS.
- INSPECTION OPERANGS SHOULD BE PROVIDED AT EACH PIPE CONNECTION POINT AND AT A HOMBIAL SPACING OF 35m.
- AVOID UNDERMINAND THE FOOTING WITH ANY TREICHES OR PIPE OR PITS UILLESS
 THE FOOTING HAS BEEN DESIGNED TO ALLOW FOR SUCH SITUATION SUB-SURFACE
 DRAINAGE IS REQUIRED TO REVOVE ANY UNWANTED GROUND WAT ER BY MEANS OF
 SOMM SLOTED PIPE IN A 3000mm WIDE TREICH MINN FALL OF 1 100], BASE OF THE
 TREICH IS FILLED WITH 10mm CRUSHED ROCK OR SIMILAR COVERING THE SLOTED

 THE ICH IS FILLED WITH 10mm CRUSHED ROCK OR SIMILAR COVERING THE SLOTED

 THE ICH IS FILLED WITH 10mm CRUSHED ROCK OR SIMILAR COVERING THE SLOTED

 THE ICH IS FILLED WITH 10mm CRUSHED ROCK OR SIMILAR COVERING THE SLOTED

 THE ICH IS FILLED WITH 10mm CRUSHED ROCK OR SIMILAR COVERING THE SLOTED

 THE ICH IS FILLED WITH 10mm CRUSHED ROCK OR SIMILAR COVERING THE SLOTED

 THE ICH IS THE ICH I
- . AG DRAINS MUST HOT BE HISTALLED WITHIN 1500mm FROM ANY FOOTING
- AG DRAINS MUST BE INSTALLED AT THE BASE OF ALL SITE CUTS THAT EXCEED 400mm IN HEIGHT, ALONG THE HIGH SIDE OF A BLOPING SITE AND POSSIBLY ALONG THE LOW SIDE OF A SLOPING SITE ALONG THE BOUNDARY, TO BE CONNECTED TO

CLIENT: Mr & Mrs P.A. & P.C. FERNANDO

WB CIVIL STRUCTURAL ENGINEERS

ENGINEERS & BUILDERS ABN: 84119322436

OFFICE:
NO: 9, NUMERING COURT, MELTON, VIC 3337
Mobile: 0401023328 / Ph: 03 9746 0089
Email: wbcsong@gmail.com

Registered Civil/Structural Engineer Priyan Wijeyeratne EC 19060

PROJECT:
D/S 3 BED RESIDENCE

PROJECT ADDRESS: No: 17, Frome Court, Taylors Hill

SHEET NO:

SLAB & BEAM CONSTRUCTION REQUIREMENTS

THESE NOTES TO BE FOLLOWED UNLESS NOTED OTHERWISE BY THE ENGINEER

- 1. THE SLAB SUBGRADE SHALL BE SCALPED CLEAR OF GRASS, VEGETATION AND ORGANIC MATIER AND BE PREPARED IN ACCORDA NCE WITH SECTION 6 AS 2870 2011.
- 2. EXCAVATIONS ARE TO BE EXAMINED CAREFULLY AND ANY UNUSUAL FEATURES REPORTED TO THE GEOTECHNICAL ENGINEER. CARE MUST BE TAKEN TO ENSURE THAT ALL FOOTINGS ARE FOUNDED ON & IN MATERIAL SPECIFIED IN THE SOIL REPORT.
- 3. THE INTERIOR SLAB PANELS SHALL BE FOUNDED IN SOIL IN ACCORDANCE WITH GEOTECHNICAL REPORT UNLES NOTE OTHERWISE.
- 4. THE VAPOUR BARRIER SHALL BE WELL LAPPED (MINIMUM 300MM) AND TAPED AT JOINTS. CARE MUST BE TAKEN DURING CONSTRUCTION TO PREVENT PUNCTURE OF MEMBRANE.
- 5. THE SITE IS TO BE GRADED AWAY FROM THE SLAB SO THAT WATER WILL NOT POND AGAINST THE SLAB.
- 6. ALL DRAINAGE AND SEWERAGE PIPES ADJACE NTTO THE BUILDING ARE TO BE SET BACK AT A DEPTH SUCH THAT IS BEYOND THE INFLUENCE OF THE FOOTINGS. ANGLE OF REPOSE = 45°. PROVIDE LAGGING WHERE SUCH PIPES PASS THROUGH SLAB BEAMS TO ALLOW FOR DIFFERENTIAL MOVEMENT.
- 7. ALL CONCRETE TO BE PLACED IN POSITION IS TO BE ADEQUATELY MECHANICALLY VIBRATED.
- 8. THE OWNER AND BUILDER ARE TO REFER TO RELEVANT APPENDICES OF SOIL REPORT, AS2870 ON FOUNDATION MAINTENANCE AND TO C.S.I.R.O.'s PUBLICATION SHEET No. 10-91 "GUIDE TO HOME OWNERS MAINTENANCE AND FOOTING PERFORMANCE".
- 9. SITE DRAINAGE SHALL BE IN ACCORDA NCE WITH PLUMBING REQUIREMENTS CLAUSE 5.6.4 OF AS2870 2011 & DRAINAGE REQUIREMENTS CLAUSE 5.6.3 OF AS2870 2011.
- 10. WHERE EXISTING OR PROPOSED TREES ARE WITHIN THE ZONE OF INFLUENCE OF ANY FOOTING (I.e. 1.0XMATURE TREE HEIGHT), THEN THE FOOTINGS ARE TO BE DEEPENED AND FOUNDED DIRECTLY ONTO WEATHRED BEDROCK OR VERY STIFF CLAY IF PRESENT OR 2000MM DEEP; WHICHEVER IS SHALLOWER. ALTRNATIVELY THE TREES COULD BE REMOVED (WITH RELEVANT PERMITS OBTAINED) OR TREE ROOTBARRIERS PLACED.
- 11. PROVIDE ADDITIONAL CONTROL JOINTS IN MASONARY WALLS ABOVE JUNCTIONS BETWEEN BEAMS FOUNDED ON DIFFERENT SOIL TYPES.

SITE DRAINAGE & PLUMBING REQUIREMENTS

THE REQUIREMENTS STATED IN THE LATEST VERSION OF AS 2870 MUST BE STRICTLY ADHERED TO ALL THE TIME BY THE BUILDER.

PARTICULAR ATTENTION MUST BE PAID TO THE CLAUSED 5.6.3 & 5.6.4 OF AS 2870 REGARDING SITE DRAINAGE AND PLUMBING CONSTRUCTION.

IF ANY OF THE REQUIREMENTS CANNOT BE ACCOMPLISHED, THE BUILDER MUST IMMEDIATELY INFORM THE ENGINEER FOR INSTRUCTIONS.

STEEL & TIMBER BEAMS/LINTELS

- Steel/Timber beams/Lintels to be supported a minimum of 90/100mm UNO.
- Steel beams/Lintels to be protected from corrosion as per
 Note S9 on sheet 2/6 of this set of plans...

CLIENT: Mr & Mrs P.A. & P.C. FERNANDO

WB CIVIL STRUCTURAL ENGINEERS

ENGINEERS & BUILDERS
ABN: 84119322436
OFFICE:

NO: 9, NUMERING COURT, MELTON, VIC 3337
Mobile: 0401023328 / Ph: 03 9746 0089
Email: wbcseng@gmail.com

Registered Civil/Structural Engineer Priyan Wijeyeratne EC 19060

PROJECT:
D/S 3 BED RESIDENCE
PROJECT ADDRESS:
No: 17, Frome Court,
Taylors Hill

SHEET NO:

STIFFENED RAFT SLAB ON GROUND - TYPICAL DETAILS

2 N12 bars
tied to slab mesh
Slab mesh
N12 cranked bars @ 600mm c/c
450mm lap with mesh (where step is greater than 200mm

Trench mesh
3-L12TM200
(typ.)

STEP-DOWN

N16 dowell bars @ 400 c/c - 500mm long. One end of bar must be made moveable by wrapping with 'Densotape'.

CONSTRUCTION JOINT

Thicken the slab to 150mm if load bearing wall

Sleeve to pipe to have 40mm radial clearance and lagged with polythene

Service pipe

Service pipe

Service pipe

Service pipe

Service pipe

Locally deepen beam by sleeve diameter

Min. length to be sleeve dia. + 500mm

SERVICE PENETRATION IN SLABS & BEAMS

is greater than 1000mm from a beam & use 2 layers of reinforcement mesh as shown Standard flashing min. Load bearing Provide 3-L12TM200 150mm up wall additional reinforcement Weepholes @ (typ.) 1.2m c/c Provide 3-L12TM200 Reinforcement fabric additional reinforcement Refer to SL 92 (typ.) (typ.) Architectural Plans XXX Depth = 500 mmAverage ground level //XXX Refer to table 1 50mm thick (Sheet 6) 50mm thick sand bed sand bed Trench mesh 3-L12TM200 Trench (typ.) -300-150 0.2mm thick polythene vapour mesh 3-L12TM200 barrier as per AS 2870 under slab (typ.) STIFFENING BEAM **EDGE BEAM**

Provide additional 4-N12 bars 1200 min. length tied to mesh where service pipe inserts are made for plumbing

Cut mesh wires to insert

service pipes with minimum

cover 30mm around

WB CIVIL STRUCTURAL ENGINEERS & BUILDERS

SCALE: NOT TO SCALE

Mr & Mrs P.A. & P.C.

ENGINEERS & BUIL.
ABN: 84119322436
OFFICE:

CLIENT:

FERNANDO

NO: 9, NUMERING COURT, MELTON, VIC 3337 Mobile: 0401023328 / Ph: 03 9746 0089 Email: wbcseng@gmail.com

Registered Civil/Structural Engineer Priyan Wijeyeratne EC 19060

PROJECT:
D/S 3 BED RESIDENCE
PROJECT ADDRESS:
No: 17, Frome Court,
Taylors Hill

SHEET NO:

C:\Users\priyanw\Desktop\PRIYANS PROJECTS\2-17-FROME CRT-TAYLORS HILL\NO 17-FROME COURT-TAYLORS HILL - PRIMAL FERNANDO.dwg

UPPER FLOOR FRAMING FIXING PLAN

STEEL UB AND POST FIXING DETAIL (TYP.) - N.T.S.

GENERAL FRAMING NOTES:

- ALL BEAMS TO HAVE MIN. 110MM END BEARING UNO. & BUTTED AT SAME LEVEL.
- THE TIE DOWN REQUIREMENTS AND BRACING SHALL BE N ACCORDANCE WITH AS1682,2-2010.
- SAMPLE BRACING DETAILS PROVIDED ON SHEET 9/9.

BEAM CONNECTION DETAIL (TYP.) - N.T.S.

SCALE: 1:100

CLIENT: Mr & Mrs P.A. & P.C. FERNANDO

WB CIVIL STRUCTURAL ENGINEERS

ENGINEERS & BUILDERS
ABN: 84119322436
OFFICE:

NO: 9, NUMERING COURT, MELTON, VIC Mobile: 0401023328 / Ph; 03 9746 0089 Email: wbcseng@gmail.com

Registered Civil/Structural Engineer Priyan Wijeyeratne EC 19060

PROJECT: D/S 3 BED RESIDENCE

PROJECT ADDRESS: No: 17, Frome Court, Taylors Hill

SHEET NO:

WALL & ROOF BRACING INFORMATION

OR DIAGONAL METAL TENSION STRAPS - TYPE A
(OR DIAGONAL METAL ANGLE BRACES)
(BRACING CAPACITY 3.0 kN/m)

PLYWOOD BRACING SYSTEM - TYPE B (BRACING CAPACITY 3.4 kN/m)

NOTE 1

ALL WALL & ROOF BRACING (FOLLOW TRUSS MANUFACTURER'S DETAIL FOR ROOF BRACING) TO BE INSTALLED AS PER AS 1684.2. WHERE METAL BRACING CANNOT BE INSTALLED DUE TO INADEQUATE SPACE PLYWOOD BRACING TO BE USED. PLYWOOD BRACING IS PREFERRED AT WALL CORNERS. BRACING CAPACITIES AS PER AS 1684.2.

NOTE 2:

BRACING TYPES SHOWN IN COLOR IS MANDATORY MINIMUM TO BE INSTALLED AS PER AS1684. BUILDER MAY CHANGE LOCATIONS SHOWN FOR EASE OF FIXING, PROVIDED TOTAL LENGTH/NUMBER INDICATED IS MAINTAINED.

NOTE:

BRACING TYPES (METAL (A) & PLY (B)) MAY BE INTERCHANGED AS LONG AS TOTAL CAPACITY IS SAME. BRACING CAPACITIES ARE PROVIDED IN BRACKETS - AS PER AS 1684.2.

NOTE 4:

RAKING FORCE SOUTHERLY DIRECTION =

30X0.5 = 15 kN (F/F) 20X0.5 = 10 kN (G/F)

RAKING FORCE WESTERLY DIRECTION =

12X0.5 = 6 kN (F/F) 11X0.5 = 5.5 kN (G/F)

SCALE: 1:100

CLIENT: Mr & Mrs P.A. & P.C. FERNANDO

WB CIVIL STRUCTURAL ENGINEERS

ENGINEERS & BUILDERS ABN: 84119322436

OFFICE: NO: 9, NUMERING COURT, MELTON, VIC 3337 Mobile: 0401023328 / Ph: 03 9746 0089 Email: wbcseng@gmail.com

Registered Civil/Structural

Engineer Priyan Wijeyeratne EC 19060

PROJECT:
D/S 3 BED RESIDENCE

PROJECT ADDRESS: No: 17, Frome Court, Taylors Hill

SHEET NO: